AWS Solutions Architect Portfolio

My Architecting Mindset

With over a decade of experience in B2B sales and an AWS Solutions Architect certification, | bring a business-
first mindset to every architecture. My approach is grounded in understanding the 'why' behind the build-
focusing on ROI, customer impact, scalability, and simplicity. | design systems that solve real business

problems, balance tradeoffs, and align with long-term goals.

My core principles:

1. Simplicity scales better than complexity.

2. Every service should earn its place.

3. Security and cost-awareness are non-negotiable.

4. Build with failure in mind, design for resilience.

Project 1: Scalable Web Application on AWS

Designed a scalable, secure 3-tier architecture for a simulated marketing portal using AWS core services. The

solution supports high traffic, reduces costs, and ensures business continuity during national campaigns.

Amazon S3 Amazon CloudFront

(Static Hosting) (CDON)
\» ic Load Bal Amazon CloudwWatch
EC2 Auto Sdaling Group \ Amazo&g:;;:ic-che

IAM Roles & Policies

Amazon RDS
(MySQL Multi-AZ)

VPC + Security Groups

Key Services: Amazon S3, CloudFront, EC2 (Auto Scaling), Elastic Load Balancer, RDS (MySQL), ElastiCache,
IAM, CloudWatch, VPC.

Outcome: Achieved simulated 3x traffic scalability with zero downtime and an 18% reduction in projected

monthly costs.

AWS Solutions Architect Portfolio

Design Tradeoffs Considered

- Chose S3 + CloudFront over a web server to offload static content and reduce latency globally.

- Used EC2 Auto Scaling for dynamic workloads instead of ECS/Fargate to maintain simplicity and cost
control.

- Selected RDS with Multi-AZ for availability, accepting slightly higher cost over single-AZ for reliability.-

Integrated ElastiCache to optimize DB performance but accepted additional configuration complexity.

Project 2: Serverless Web App with AWS Lambda

Built a serverless task management web app using AWS Lambda, API Gateway, DynamoDB, and S3. Users

can create, update, and delete tasks via a lightweight frontend.

Architecture:

- 83 hosts static frontend (HTML/CSS/JS)
- API Gateway triggers Lambda functions
- DynamoDB stores task data

- |AM handles secure access controls

Outcome: Zero server management, auto-scalable backend, and sub-second latency for 95% of requests.

MIECIE | P v |- AWS Lambda — v

am (auth)

Design Tradeoffs Considered

- Opted for Lambda to avoid managing servers, accepting cold-start latency for infrequent invocations.

- Chose DynamoDB for performance and scalability, despite its eventual consistency model.

- Used API Gateway with Lambda integration to simplify routing, but considered increased complexity in IAM
policies.

- No VPC used for Lambda to reduce startup latency, while noting future networking constraints.

AWS Solutions Architect Portfolio

Project 3: Real-Time Data Pipeline on AWS

Designed a real-time data pipeline to process and analyze streaming website events. Used AWS native

services to collect, transform, and store data for reporting.

Pipeline:

- Kinesis Data Streams collects clickstream events
- Lambda processes and filters data

- Data stored in S3 for batch analysis

- Athena used to query structured logs- CloudWatch monitors ingestion rates

Outcome: Enables near real-time insight into user behavior with scalable, pay-as-you-go infrastructure.

User Clickstream Amazon Kinesis AWS Lambda Amazon S3 CloudWatch
vent: Data Stream (Transform) (Storage) = (Monitoring)

Amazon Athena
(Querying)

Design Tradeoffs Considered

- Used Kinesis for real-time ingestion; accepted higher complexity over SQS for stream-based analytics.
- Selected Lambda for transformation due to flexibility and no ops, despite execution time limits.
- Stored data in S3 for cost-effective, durable storage, instead of Redshift which has higher ongoing costs.

- Leveraged Athena for querying with zero provisioning but noted tradeoff in query speed vs. managed DBs.

	My Architecting Mindset
	Project 1: Scalable Web Application on AWS
	Design Tradeoffs Considered
	Project 2: Serverless Web App with AWS Lambda
	Design Tradeoffs Considered
	Project 3: Real-Time Data Pipeline on AWS
	Design Tradeoffs Considered

